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Abstract

To understand the neural representation of broadband, dynamic sounds in
Primary Auditory Cortex (AI), we characterize responses using the Spectro-
Temporal Response Field (STRF). The STRF describes and predicts the lin-
ear response of neurons to sounds with rich spectro-temporal envelopes. It
is calculated here from the responses to elementary ‘ripples,’ a family of
sounds with drifting, sinusoidal, spectral envelopes—the complex spectro-
temporal envelope of any broadband, dynamic sound can expressed as the
linear sum of individual ripples. The collection of responses to all elemen-
tary ripples is the spectro-temporal transfer function. Previous experiments
using ripples with downward drifting spectra suggested that the transfer
function is separable, i.e., it is reducible into a product of purely tempo-
ral and purely spectral functions. Here we compare the responses to upward
and downward drifting ripples, assuming separability within each direction,
to determine if the total bi-directional transfer function is fully separable. In
general, the combined transfer function for two directions is not symmet-
ric, and hence units in AI are not, in general, fully separable. Consequently,
many AI units have complex response properties such as sensitivity to direc-
tion of motion, though most inseparable units are not strongly directionally
selective. We show that for most neurons the lack of full separability stems
from differences between the upward and downward spectral cross-sections,
not from the temporal cross-sections; this places strong constraints on the
neural inputs of these AI units.
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1 Introduction

Only a few general organizational features are known in Primary Auditory Cor-
tex (AI). They include a spatially ordered tonotopic axis (Reale and Imig 1980),
bands of alternating binaural response properties (Middlebrooks et al. 1980), and
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a variety of other response features that change systematically along the isofre-
quency planes such as thresholds (Schreiner et al. 1992), bandwidths (Schreiner
and Sutter 1992), FM selectivity (Mendelson et al. 1993; Shamma et al. 1993),
and asymmetry of response areas (Shamma et al. 1993). To derive a functionally
coherent picture of these maps, it is necessary to integrate these features within
a comprehensive descriptor of the unit responses, one that can be quantitatively
derived and employed to predict responses to novel stimuli.

Traditionally measuredresponse areas(RA) and iso-intensity response curves
are inadequate because they rarely include response dynamics and cannot be used
to predict responses quantitatively. An alternative is the Response Field (RF)
(Schreiner and Calhoun 1995; Shamma et al. 1995), a static, purely spectral func-
tion analogous to the RA except for the use of broadband sounds (but see (Nelken
et al. 1994) and (Sutter et al. 1996)). A dynamic generalization of the RF is the
Spectro-Temporal Response Field (STRF), a characteristic function of a neuron
obtained using broadband sounds (Aertsen and Johannesma 1981; Eggermont
1993 and references therein; Kvale and Schreiner 1995; Kowalski et al. 1996a;
deCharms et al. 1998; Escabi and Schreiner 1999; Theunissen et al. 1999). A
schematic of an idealized STRF is illustrated in Fig. 1. Qualitatively, its spec-
tral axis reflects the range of frequencies that influence the response or firing rate
of the neuron being characterized, and its temporal axis reflects how this influ-
ence changes as a function of time. Positive-valued regions of the STRF describe
excitatory influence, and negative regions describe inhibitory influence. The inter-
play between the spectral and temporal axes can give multiple interpretations to
the STRF, e.g., as a time evolving spectral response field, or a family of impulse
responses labeled by frequency band.

Over the last few years, we have developed new methods to derive the STRFs
and characterize the responses of both single and multiple units in the ferret Pri-
mary Auditory Cortex (AI) (Kowalski et al. 1996a; Kowalski et al. 1996b). These
methods use “moving ripples”: time-varying, broadband sounds with sinusoidal
spectral envelopes that drift at constant velocity along the logarithmic frequency
axis. Fig. 2 illustrates the spectrogram of such a stimulus. Neuronal responses are
vigorous and well phase-locked to these spectral and temporal envelope modula-
tions, over a range of velocities and densities. Measuring the amplitude and phase
of the locked component of the response enables one to constructtransfer func-
tions. A transfer function can be inverse-Fourier transformed to obtain the STRF
that characterizes a unit’s dynamics and selectivity along the tonotopic axis.

In developing these measurement and analysis methods, we use two funda-
mental assumptions. The first is that the responses are substantially linear with
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Figure 1: An idealized STRF, with spectral and temporal 1-dimensional sections.

respect to the time-varying spectral envelope of stimuli. In particular, this implies
that the response to a spectro-temporally rich stimulus—whose envelope can al-
ways be described as the sum of multiple moving ripples—will be the sum of its
responses to the individual ripple components. This assumption was confirmed by
predicting successfully responses to the superposition of multiple ripples (Kowal-
ski et al. 1996b). Further research on the origin and limits of this linear behavior,
and the characterization of nonlinear aspects of the responses is needed.

The second important assumption deals with the separability of the tempo-
ral and spectral aspects of the responses. Specifically, we have demonstrated in
other reports that temporal and spectral transfer functions can be measured inde-
pendently of each other, and then combined with a simple product to compute
the total transfer function (Kowalski et al. 1996a; Klein et al. 2000). The impor-
tance of this finding stems from its experimental implications for measuring the
STRFs and theoretical consequences for the biophysical and functional models
of the STRFs. On the experimental side, separability makes it possible to infer
responses to all ripple velocities and peak densities based on only a pair of tem-
poral and spectral transfer functions. Without this assumption, measuring the two
dimensional transfer function is difficult because of the extended times needed to
collect adequate spike counts. On the theoretical side, separability suggests that
certain features of the STRF (as we shall discuss in detail below) are formed by
independent (and likely sequential) spectral and temporal processing stages.

In our earlier study, separability was validated for ripples moving only in one
direction (downwards in frequency), a notion also known as “quadrant separabil-
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ity”. In this report, we compare the separable functions (spectral and temporal)
across upward and downward quadrants. If the functions are the same across
quadrants, the responses are “fully separable” (i.e., they are separable); otherwise
they are quadrant separable, which is a (specialized) form of inseparability.

Like quadrant separability, full separability has experimental and theoretical
implications. On the experimental side, fully separable STRFs can be measured
with either upward or downward moving ripples. Theoretically, fully-separable
responses imply an STRF that is fully decomposable into the product of a purely
temporal impulse response and a purely spectral response field. It also implies
a unit that responds equally well to upward and downward moving ripples, and
hence has necessarily a symmetric transfer function magnitude with respect to
direction (Watson and Ahumada 1985). By contrast, cells that are only quadrant
separable necessarily respond in asymmetric fashion with respect to direction, i.e.,
are direction-sensitive. Further theoretical aspects and biological implications of
full separability and quadrant separability will be discussed in the second paper in
this series (Simon et al. 1999a)

In the following sections, we first review the experimental methods and analy-
sis procedures used. We then describe examples of the STRFs measured in AI and
summarize the distribution of the STRF and transfer function parameters encoun-
tered. We focus on the issue of quadrant and full-separability, and propose mea-
sures to quantify them. Finally, we discuss the significance of the results and their
relationship to results from similar auditory and analogous visual experimental
paradigms. We shall restrict our presentation in this paper to measurements with
singly presented moving ripples. In another paper (Klein et al. 2000), we have
compared the results to STRFs measured with simultaneously presented ripples
(Klein et al. 1999) and assess the linearity of the responses, assess how nonlin-
ear factors affect the measurements, and directly confirm the property of quadrant
separability.

2 Methods

2.1 Surgery and animal preparation

Data were collected from a total of 11 domestic ferrets (Mustela putorius) sup-
plied by Marshall Farms (Rochester, NY). The ferrets were anesthetized with
sodium pentobarbital (40 mg/kg) and maintained under deep anesthesia during
the surgery. Once the recording session started, a combination of Ketamine (8
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mg/Kg/Hr), Xylazine (1.6 mg/Kg/Hr), Atropine (10µg/Kg/Hr) and Dexametha-
sone (40µg/Kg/Hr) was given throughout the experiment by continuous intra-
venous infusion, together with Dextrose, 5% in Ringer solution, at a rate of 1
cc/Kg/Hr, to maintain metabolic stability. The ectosylvian gyrus, which includes
the primary auditory cortex, was exposed by craniotomy and the dura was re-
flected. The contralateral ear canal was exposed and partly resected, and a cone-
shaped speculum containing a miniature speaker (Sony MDR-E464) was sutured
to the meatal stump. For more details on the surgery see (Shamma et al. 1993).

2.2 Recordings

Action potentials from single units were recorded using glass-insulated tungsten
micro-electrodes with 5–7 MΩ tip impedances at 1 kHz. Neural signals were
fed through a window discriminator and the time of spike occurrence relative to
stimulus delivery was stored using a computer. In each animal, electrode pene-
trations were made orthogonal to the cortical surface. In each penetration, cells
were typically isolated at depths of 350–600µm corresponding to cortical layers
III and IV(Shamma et al. 1993). In many instances, it was difficult to hold a single
unit for extended recordings, and hence several units were recorded instead. Such
data were labeled “multiunit recordings” and are explicitly designated as such and
separated from the single unit records in all data presentations in the paper.

2.3 Acoustic stimuli

All stimuli are computer synthesized. For each unit isolated, initial tests are car-
ried out using tonal stimuli to measure the basic frequency response curve at sev-
eral intensities, to determine the Best Frequency (BF), the response area of the
cell, and response thresholds. All other stimuli used in these experiments have
broadband spectra with a sinusoidally modulated (or rippled) envelope

S(t, x) = L [1 + ∆A · sin(2π · w · t + 2π · Ω · x + Φ)] (1)

(or linear combinations of such envelopes), wherex = log2 (f/f0) is the number
of octaves above the base frequencyf0. The ripple envelope resembles a drift-
ing one-dimensional grating as illustrated in Fig. 2. Five independent parameters
characterize the ripple envelope: (1) background level of the stimulus (L); (2)
amplitude modulation of the ripple (∆A) in % or dB; (3) ripple velocity (w) in
units of cycles/s (or Hz); (4) ripple frequency (Ω) in units of cycles/octave; (5)
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the initial phase of the rippleΦ. The spectra consist either of 20 or 100 tones per
octave equally spaced along the logarithmic frequency axis, or with a spacing of 1
tone/Hz with an amplitude decay producing equal power per octave. The spectra
typically span 5 octaves (e.g., 0.25–8 kHz or 0.5–16 kHz), with the range chosen
such that the response area of the cell tested lay within the stimulus spectrum.

Ripple Stimulus
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Figure 2: Envelope of a moving ripple, w = 2 Hz, Ω = 0.4 cycles/octave, Φ = −90◦,
with a 10 dB amplitude modulation around a 60 dB base, with spectral and temporal 1-
dimensional sections. Ripple phase changes linearly with time and spectral position (in
octaves).

A single-ripple stimulus at overall levelL dB SPL would typically be com-
posed of 101 logarithmically spaced components, each atL − 10 log10 (101) ≈
L− 20 dB . The overall stimulus level was chosen on the basis of threshold at BF;
typically L was set 10–20 dB above threshold. High levels (L ≥ 70 dB) were
avoided to ensure the linearity of our stimulus delivery system. The amplitude
of a single ripple was defined as the maximum percentage or logarithm change
in the component amplitudes. Ripple amplitudes were either at 90% or at 10 dB
modulation, except for a few recordings in which we studied the effect of depth
modulation on responses.

The ripple velocitiesw and ripple densitiesΩ used were determined by the re-
sponse properties of the neuron, but the typical range used was|w| < 25 Hz (with
some units requiring up to 100 Hz) and|Ω| < 1.6 cycles/octave (with some units
requiring up to 4 cycles/octave). Single ripples were always presented withΦ = 0.
By the convention established in Eq. 1, a ripple whose timbre is always moving
downward in frequency, as in Fig. 2, has positivew and positiveΩ. A ripple whose
spectral peaks are always moving upward in frequency has negativew and posi-
tive Ω. Also by Eq. 1 and using the trigonometric identitysin(α) = sin(−α + π),
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a ripple with ripple velocityw, ripple frequencyΩ, and phase constantΦ is identi-
cal to the ripple with ripple velocity−w, ripple frequency−Ω, and phase constant
−Φ + π, so we may constrainΩ ≥ 0 without loss of generality.

The stimulus bursts had an 8 ms rise-fall time and duration of 1 s or 1.7 s,
repeated every 3-4 seconds. All stimuli were gated and fed through an equalizer
into the earphone. Calibration of the sound delivery system (to obtain a flat fre-
quency response up to 20 kHz) was performed in situ with the use of a 1/8-in.
Brüel & Kjaer 4170 probe microphone. The microphone was inserted into the ear
canal through the wall of the speculum to within 5 mm of the tympanic membrane.
The speculum and microphone setup resembles closely that suggested by Evans
(Evans 1979).

2.4 Theoretical considerations

2.4.1 Defining the STRF

The fundamental goal of this work is to measure STRFs in AI. The STRF is de-
fined here as a spectro-temporal functionSTRF (t, x). The linear response rate
y(t) of a cell is then related to itsSTRF (t, x) and the spectro-temporal envelope
of the stimulusS(t, x) by y(t) =

∫ ∫
dt′ dxS(t′ − t, x) · STRF (t, x), i.e., con-

volution along the time dimensiont and integration along the spectral dimension
x.

We measure the STRF through measurement of its two-dimensional Fourier
transform, or transfer functionT (w, Ω) = FwΩ [STRF (t,−x)], and then inverse
transform to compute the STRF, where the coordinates dual tot andx arew andΩ
respectively (see Fig. 3). By measuring the sinusoidal component with frequency
w of the responseywΩ(t) of a cell to a ripple of specific ripple velocityw and
ripple densityΩ, we can obtain the transfer functionT (w, Ω) at one point inw–Ω
space (Depireux et al. 1998):

ywΩ(t) =
∫∫

dt′dx′ STRF (x′, t′) sin 2π[w(t− t′) + Ωx′]

= |T (w, Ω)| sin [2πwt + Φ(w, Ω)] . (2)

This way, we derive the amplitude|T (w, Ω)| and phaseΦ(w, Ω) of the com-
plex transfer functionT (w, Ω) by measuring the amplitude and phase of the (real)
response of the cell. Note that the use of complex numbers in the derivation of
Eq. 2 and equations below is not theoretically necessary, but it does simplify the
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calculations in the transfer function space considerably. By the definition of the
transfer function, it follows that the inverse Fourier transform ofT (w, Ω) is the
STRF of the cell:

STRF (t, x) = F−1
t,−x [TwΩ] (3)

BecauseSTRF (t, x) is real, butT (w, Ω) is complex, there is complex conjugate
symmetry,

T (−w,−Ω) = T ∗(w, Ω) (4)

which also holds for the Fourier transform of any real function oft andx.

Ω

w

12

3 ( =1*) 4 ( =2*)

Figure 3: To measure the complete ripple transfer function of an arbitrary STRF we
would need to measure the response of the cell to all the ripples represented by large
circles above. The smallest circles correspond to redundant ripples by complex conjuga-
tion. The value of the transfer function along the w = 0 axis is set to zero, because the
modulation transfer function is not well-defined there. Quadrant separability allows us to
measure only the responses to ripples enclosed by the solid boxes. The transfer function
in the dashed box is equal to the transfer function in the bottom half of the vertical box but
with the opposite phase.

2.4.2 Defining and assessing separability

Separability is an important property of the transfer functions as discussed earlier.
A fully separable transfer function is one that factorizes into a function ofw and
a function ofΩ over all quadrants:T (w, Ω) = F (w) · G(Ω). This implies that
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STRF (t, x) is spectrum-time separable:STRF (t, x) = IR(t) · RF (x). In this
case, we only need to measure the transfer function for allΩ at a convenientw,
and for allw at a convenientΩ. F (w) andG(Ω) are each complex-conjugate
symmetric (F (−w) = F ∗(w), G(−Ω) = G∗(Ω)) becauseIR(t) andRF (x) are
real, so we need only consider the positive values of each. This dramatically
decreases the number of measurements needed to characterize the STRF.

A transfer function may also be only partially separable, in that it is separable
only for ripples moving in a given direction. In this case, the transfer function is
called quadrant separable, and can be expressed as the product of two independent
functions:

T (w, Ω) =
{

F1(w) G1(Ω) w > 0, Ω > 0
F2(w) G2(Ω) w < 0, Ω > 0

(5)

where the subscript 1 indicates thew > 0, Ω > 0 quadrant, and the subscript 2 the
w < 0, Ω > 0 quadrant (see Fig. 3). Note that by reality of the STRF, the value
of the transfer function in quadrants 3 (w < 0, Ω < 0) and 4 (w > 0, Ω < 0) is
complex conjugate to the value in quadrants 1 and 2 respectively. In this case, the
STRF is not separable in spectrum and time, but is the linear superposition of two
functions, one with support only in quadrant 1 (and 3), and one with support only
in quadrant 2 (and 4).

Full and quadrant separability need not be an all-or-none property, but rather
can be assessed in a graded fashion. To do so, we employ singular value decom-
position (SVD) methods to compute thesingular matrix(Λ) corresponding to the
transfer function matrixT (w, Ω) as:

T = U · Λ · V †, Λ = diag(λ1, λ2, . . . , λn), λ1 ≥ λ2 ≥ . . . , (6)

whereU, V † are the corresponding matrices of singular vectors (Haykin 1988).
Because of the presence of noise in the measurement, allλs are expected to be
non-zero, with their value decreasing asymptotically to a value below the noise
floor. With respect to this floor, the number of significant singular values inΛ
varies depending on the nature of the transfer functionT :

Fully separable: If Λ hasonly onesignificant singular value then the matrix
T is fully separable, i.e., expressible as the product of two vectors — a
purely temporal and a purely spectral function. These functions will be the
first singular vectors inU andV †.
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Totally inseparable: If Λ hasmore than tworelatively sizeable singular
values, then the matrixT is totally inseparable. The degree of inseparability
can be indicated by the ratioλ2

1/
∑

i λ
2
i .

Quadrant separable: If Λ hasexactly twosignificant singular values then
the matrixT is inseparable but possibly quadrant separable. To check, we
apply SVD to each quadrant separately. Just as above, if only one eigen-
value λ is large, then the transfer function in that quadrant is separable,
otherwise it is not.

In this report, our experiments assume quadrant separability since we measure
in each quadrant a temporal transfer function at only oneΩ and a spectral transfer
function at only onew. Our goal is to test for full separability as in the steps above.
We shall also be interested in examining the origin of inseparability. Specifically,
we shall compute three factors that give rise to inseparability:

• The relative power in the first and second quadrants:

αd =
P2 − P1

P1 + P2

, (7)

whereP1 = (power in quadrant 1)= λ2
1, andP2 = (power in quadrant 2)=

λ2
2. Absolute value ofαd near one implies strong preference of the responses

to the direction of ripple movement, and hence strong inseparability.

• The asymmetry of the spectral transfer function aroundΩ = 0 is

αs = 1−
∣∣∣∣∣∣

∑
Ω>0 G1(Ω) ·G∗

2(Ω)√∑
Ω>0 |G1(Ω)|2 ·∑Ω>0 |G2(Ω)|2

∣∣∣∣∣∣ , (8)

where the quantity inside the absolute value bars is the (complex) correla-
tion betweenG1(Ω) andG2(Ω). Index αs values near zero imply strong
asymmetry (i.e., lack of correlation) in the transfer function to different di-
rections, and hence strong inseparability.

• The asymmetry of the temporal transfer function aroundw = 0 is

αt = 1−
∣∣∣∣∣∣

∑
w>0 F1(w) · F2(−w)√∑

w>0 |F1(w)|2 ·∑w>0 |F2(−w)|2

∣∣∣∣∣∣ , (9)
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where the quantity inside the absolute value bars is the (complex) correla-
tion betweenF1(w) andF ∗

2 (−w). Indexαt values near zero imply strong
asymmetry (i.e., lack of correlation) in the transfer function to different di-
rections, and hence strong inseparability.

2.4.3 Effects of non-linearity

The most prominent non-linear distortions are approximate half-wave rectification
and compression. The half-wave rectification is primarily due to the positivity of
spike rates (ordinarily the steady-state response to a flat spectrum is significantly
less than half the peak firing rate of the unit); the distortion of a sinusoid due to
half-wave rectification does not affect the phase of the response, and its effect
on the amplitude of the first Fourier component is a constant factor (independent
of w andΩ ). The distortion due to compression or saturation, similarly, does
not affect the phase of the Fourier transform components of the response, and
similarly affects the amplitude only by an overall constant factor, for stimuli of
moderate level.

2.5 Data reduction

Many of the data analysis methods described here are similar or straightforward
extensions of those developed earlier in (Kowalski et al. 1996a) and those will be
only briefly reviewed here. Figs. 4 and 5 illustrate the nature of the responses
to the ripple stimuli and the analysis to extract the spectral (Fig. 4) and temporal
(Fig. 5) transfer functions. In Fig. 4A, the ripples are presented at 8 Hz, for ripple
densities from -1.6 cyc/oct to 1.6 cyc/oct in steps of 0.2 cyc/oct. Each stimulus
is presented 15 times. The ripple begins to move and the sound is acoustically
turned on att = 0 ms with a linear ramp over 8 ms. For each ripple density,
we compute a 16-bin period histogram based on the responses starting at 120
ms (to exclude the onset response). A 16-point FFT is then performed on the
period histogram, and the amplitude and phase of the first component is taken
to be the amplitude and phase of the transfer function. If the modulation of the
response were that of a purely linear system, the higher FFT coefficients would be
negligible, but because of half-wave rectification and other non-linearities, they
usually are significant. Analogous steps are followed in measuring the temporal
transfer function as shown in Fig. 5 where ripples are presented at 0.4 cyc/oct, for
ripple velocities from -24 Hz to 24 Hz in steps of 4 Hz.
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Figure 4: Data analysis for ripples of fixed ripple velocity and varying ripple frequencies.
A: Raster plot of responses. Each point represents an action potential, and each ripple
stimulus is presented 15 times. B: Period histogram for 3 example ripple frequencies,
with their sinusoidal fits. Note how the position of the peak of the best fit changes linearly
with ripple frequency; this can also be seen by the banding pattern in A. C: Magnitude
and phase of the period histogram fits. With the phase convention used for these stimuli,
ripples with Ω < 0 (quadrant 4) are equivalent to ripples with w < 0 (quadrant 2), using
the conversion (w,Ω,Φ) → (−w,−Ω,−Φ + π).

In order to construct the two dimensional spectro-temporal transfer function,
we assume quadrant separability, measure the transfer function along the cross-
sections shown in Fig. 3, to combine these spectral and temporal cross sections as
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Note how the position of the peak of the best fit changes linearly with ripple velocity. C:
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illustrated in Fig. 6. For each quadrant, the transfer function is the outer product
of the cross-section, divided by the (complex) value of the transfer function at the
crossover (×) point (in Fig. 6 the point is(w×1, Ω×1 = (8 Hz, 0.4 cycles/octave)
in quadrant 1 and(w×2, Ω×2 = (-8 Hz, 0.4 cycles/octave) in quadrant 2).

T (w, Ω) = T (w×q, Ω) · T (w, Ω×q) / T (w×q, Ω×q) (10)
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whereq = 1, 2 are the independent quadrants 1 and 2. In practice, the value of
the transfer function along the two cross-sections was measured at two different
times, giving two measurements of the transfer function at each crossover point
T (w×q, Ω×q). The results of the two measurements may differ, and so we use the
(complex) geometric mean of the two measured values as the divisor in Eq. 10,
Teff (w×q, Ω×q) = [T1st(w×q, Ω×q)T2nd(w×q, Ω×q)]

1/2.
The ratioT1st(w×q, Ω×q)/T2nd(w×q, Ω×q), which should be unity, reflects the

noise in the system, and is used to estimate reliability below.

-24 -16 -8 0 8 16 24
0

10

20

30

|T(w,Ωxq)|/√ Txq

w (Hz)
-1.6 -0.8 0 0.8 1.6
0

10

20

30

|T(wxq,Ω)|/√Txq

Ω (cyc/oct)

-1000

0

1000

Spectro-Temporal Response Field

Time (ms)

F
re

qu
en

cy
 (

kH
z)

226/20a05.m1
226/20a04.m2

0 50 100 150 200 250
 0.125

 0.25

 0.5

1

2

4
Bootstrap Error

Ωx = 0.2 cyc/oct

wx = 8 Hz

A

B

Time (ms)
0 50 100 150 200 250

-200

0

200

 0.125

 0.25

 0.5

1

2

4

Figure 6: Deriving the spectro-temporal transfer function, STRF, and related param-
eters. A: Magnitude of the temporal (left) and spectral (right) transfer function cross-
sections, normalized by the values at the cross-over points (Eq. 10). The error bars are
computed by the bootstrap method, explained below. B: The STRF of the cell computed
by an inverse Fourier transform of the complex transfer functions. To the right is the error
estimate of the STRF, using the same scale multiplied by a factor of 5, resulting in error
parameters of δ = 0.03 and ε = 0.06. See Table 1 for details.

The value of the transfer function along thew = 0 axis is set to zero, because
the modulation transfer function is not well-defined there. The value of the trans-
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fer function along theΩ = 0 axis is not measured directly, so the value used is
the mean of the value inferred from being the boundary of quadrant 1 and that
inferred from being the boundary of quadrant 2.

Once the values of transfer function for quadrants 1 & 2 andtheir boundaries
are measured, the values for quadrants 3 & 4 are given by Eq. 4(see also Fig. 3).
The STRF is then computed by an inverse Fourier transform (as in Eq. 3) and is
illustrated in Fig. 6B (left panel). This interpolated version of the STRF (used in
most figures in this paper) is obtained by using Eq. 3 on a the transfer function
padded with zeros at high|w| and|Ω|, where the transfer function vanishes (see
Fig. 6A).

2.6 Deriving STRF parameters from the phase functions

Numerous parameters can be derived from the STRF (or equivalently the transfer
function) that are analogous to traditional response measures such as BF, tuning
curve bandwidth, and latency. Most of these parameters are best derived from
analysis of the phase of the transfer functions.

We model the phase of the transfer function within each quadrantΦq(w, Ω),
q = 1, 2 (see Eq. 2) as a linear function ofw andΩ :

Φq(Ω, w) = −2πwτ q
d + 2πΩxq

m + χq, (11)

whereτ q
d is the mean or group delay of the STRF (a portion of which comes from

the response latency),xq
m = log2 (f q

m/f0) is the mean frequency in octaves around
which the STRF is centered (putting it near the BF), andχq is a constant phase
angle, for each quadrantq. The complex-conjugate symmetry of the transfer func-
tion means that these six independent parameters describe the phase everywhere
in the w–Ω plane. The convention of the minus sign beforeτd allows the time-
dependent responses to be functions of(t− τd), as is appropriate for a delay.

The justification for assuming linear fits of the phase functions has been dis-
cussed in detail earlier in (Depireux et al. 1998), and is strongly motivated by the
data (Kowalski et al. 1996a). Note, however, that the assumption ofphaselin-
earity is used only for parameter estimation and is not assumed in computing the
STRF. The first linear term in Eq. 11 stems from the fact that auditory units dif-
fering in their mean neural delays will exhibit linear phase dependence onw with
different slopes depending on the delay. Analogous arguments apply for units
that are located at different places along the tonotopic axis: the response phase of
different units (with otherwise identical STRFs) should change linearly withΩ at
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different rates, depending on the relative center frequency location. In both cases,
the slopes of the linear phase function indicate the absolute shift of the STRF rel-
ative to the origin, i.e. the mean time delayτ q

d relative to the start of the stimulus,
and the center frequencyxq

m relative to the low frequency edge of the ripple spec-
trum. The linear phase model does not assume that the linear phase shifts,τ q

d and
xq

m, are equal across quadrants, but biology suggests thatf 1
m ≈ f2

m from tonotopy
andτ 1

d ≈ τ 2
d since the temporal delays of the neural inputs are not segregated by

quadrant. This is shown experimentally below.
An interpretation ofτd, for each quadrant, is that it is the sum of the pure

response latency and (roughly) half the temporal width of the STRF. This is in
contrast to the STRF’s peak delay,τSTRF , defined to be the delay for which the
STRF achieves its maximum value, which may lead or lagτd depending on the
constant temporal phase shift,θ, defined below. Similarly,fm, for each quad-
rant, may or may not fall on the STRF’s best frequency,BFSTRF , defined to be
the frequency at which the STRF achieves its maximum value, depending on the
constant spectral phase shift,φ, defined below.

A convenient convention for interpreting the constant component of the phase
is to break up the constant phase angleχq into two parts:

χ1 = −θ + φ, χ2 = θ + φ. (12)

θ and φ are, respectively, the temporal polarity and spectral asymmetry of the
STRF. Spectral asymmetry parametrizes the balance of the STRF along the spec-
tral axis about its center. For example, a unit withφ = 0 would have itsBFSTRF

in the center of the spectral envelope of the STRF, possibly surrounded by in-
hibitory regions. A unit withφ > 0 would have itsBFSTRF at a lower frequency
than the center of the STRF, with an inhibitory sideband aboveBFSTRF . A unit
with φ < 0◦ would have itsBFSTRF at a higher frequency than the center of
the STRF, with an inhibitory sideband belowBFSTRF (see example in Fig.4C of
Shamma et al. 1995). Similarly the temporal polarity parametrizes the balance
of the STRF along the temporal axis about its center: whether the peak response
occurs before or after regions of inhibition, respectivelyθ < 0 (“onset response
at BF”) or θ < 0 (“offset response at BF”). There is an ambiguity in fixingθ and
φ which we remove by restrictingφ to lie between -90◦ and +90◦, while θ ranges
the full -180◦ to +180◦. See Fig. 7 as an illustration of the phase behavior in the
different quadrants.

In past reports (Kowalski et al. 1996a),θ andφ could be measured without
measuring the transfer function in the upward moving quadrant 2 by measuring
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Figure 7: A: The phase of the transfer function can be described by a linear fit containing
6 parameters over most of the relevant regions of the w–Ω plane. B: In this cartoon the
slope is constant for most of the curves, after (left) −2πwτ q

d has been removed from
the corresponding quadrants, corresponding to a center frequency that is independent
of the ripple frequency, and (right) after 2πΩx1

m has been removed, corresponding to a
delay that is independent of ripple velocity. At very small ripple frequencies (long ripple
periodicity), center frequency is less meaningful, and similarly for small ripple velocity
and delay, respectively. At large ripple velocity the slope asymptotes to the signal-front
delay, but when this occurs the small amplitude of the transfer function makes it difficult
to measure the phase. See Dong and Atick (1995) and Papoulis (1962).

the constant component of the phase in quadrant 1 (χ1 = −θ+φ) and along thew-
axis, where the constant component of the phase is expected to be the mean across
the quadrants ((χ1 − χ2)/2 = −θ) (note the change in convention ofθ → −θ
between the present work and Kowalski et al. 1996a).

Because of response variability, we only fit to those points of the transfer func-
tion that have more than half of the response power in the first component of the
Fourier transform. Then the fit is done across the entire two dimensional phase
plane, for each quadrant. Ultimately, our unwrapping method is less than ideal,
and estimates ofθ andφ especially reflect that (Ghiglia and Pritt 1998).
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2.7 Estimating response variability: the bootstrap method

Variability in our experiments originates from multiple sources, including internal
neural mechanisms (e.g., Poisson-like distributions of spike times), extracellular
recording/identifying methods, and equipment noise. Quantitative estimates of
the reliability of our measurements is crucial to its analysis and subsequent in-
terpretation. A method of variability estimation that is especially appropriate to
these measurements is the bootstrap method (Efron and Tibshirani 1993; Politis
1998).

The essence of this method is to use “resamples”, in whichN samples of
bootstrap data are drawnwith replacementfrom theN original samples of data.
Repeating this procedure a large number of times creates a population of bootstrap
resamples whose probability distribution is a good estimator of the probability
distribution from which the original data was drawn.

To illustrate this procedure, consider measuring the transfer function at a point
(w, Ω). This is done by presenting the same(w, Ω) stimulusN times and con-
structing a period histogram based on allN sweeps. The amplitude and phase of
the first Fourier component of the period histogram are assigned to the amplitude
and phase of the transfer function. A single bootstrap resampling of the responses
will have N sweeps, where, because they are drawn from the original responses
with replacement, some will be duplicated and some will be unused. Neverthe-
less, a period histogram is constructed, and the bootstrap estimate of the transfer
function is assigned to its first Fourier component. Performing a large number of
bootstrap resamples results in a population of estimates for the transfer function.
This population has a mean, variance, and higher order moments. These moments
are estimators of the moments of the original population (of all transfer functions
of all allowable neuronal responses to the stimulus). For example, the standard
deviation of all bootstrap estimates of the transfer function is an estimator of the
standard deviation all measurements of the transfer function. This allows us to put
error bars on our transfer functions and STRFs.

2.8 Effects of crossover point errors

Another significant source of error is the difference between the responses of re-
peated measurements at the transfer function crossover points. The ratio of these
independent measurements,T1st(wq

×, Ωq
×)/T2nd((wq

×, Ωq
×) should be unity. When

not unity, it reflects the same variability measured by the bootstrap method, but
also additional systematic error from having measured the two transfer function
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cross-sections at different times. To account for this disparity, the total squared
error of the STRF is set to the sum of the bootstrap STRF variance and the square
of the crossover errorσ×,

σ2
STRF = σ2

Bootstrap + σ2
× (13)

whereσ×(t, x) captures the systematic error from not having taken all data at the
same time, and is given by:

σ×(t, x) =


max

q


max (|T q

1 (wq
×, Ωq

×)| , |T q
2 (wq

×, Ωq
×)|)∣∣∣T q

eff (wq
×, Ωq

×)
∣∣∣


− 1


 ∗ |STRF (t, x)|

(14)
Finally, we collapse the error over the entire(t, x) plane into two dimension-less
termsδ andε.

δ =
1

∆T∆X

∫∫
dt dx σSTRF (t, x)

1

max (|STRF (t, x)|) (15)

ε =
∫∫

dt dx [σSTRF (t, x)]2
/∫∫

dt dx [STRF (t, x)]2 (16)

where∆T and∆X are the length of time and number of octaves over which the
STRF was measured.

3 Results

Data presented here were collected from 22 single unit and 54 multiunits record-
ings in 11 ferrets. In the summary histograms, both single units and multiunits are
included but are distinguished from each other.

Most units encountered in AI respond well to moving ripples. Responses are
typically phase-locked to the moving envelope of the ripple over a range of ripple
velocities and densities. However, out of a total of 172 recordings made, only
76 cases provided adequate quality and quantity of responses. The reasons for
this low yield vary. For example, we have encountered responses from a few
units that were either poorly phase-locked, or were inconsistent from trial-to-trial;
such units were abandoned since our analysis methods are unsuitable for their
characterization. Also, because of extended recording times (typically about an
hour), units were sometimes lost before sufficient data could be collected to carry
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out a full analysis. In other cases, the unit or animal changed state during the
recording session, rendering the data unreliable. To eliminate such data, we use
units only with values ofδ ≤ 0.12 andε ≤ 0.7 (seeMethods) as the threshold for
rejecting the data. These reliability statistics takes into account most of the above
sources of error.

f 1
m f 2

m τ 1
d τ 2

d φm θ δ ε sngl/
STRF (kHz) (kHz) (ms) (ms) (deg) (deg) % % mult
Fig 6 1.1 1.1 21 34 -24 -46 3 6 mult
Fig 8 A 1.5 1.9 25 23 4 - 69 3 14 mult
Fig 8 B 1.4 1.6 32 23 -43 - 58 8 29 mult
Fig 8 C 1.1 2.0 20 35 -21 -105 5 25 mult
Fig 9 A 3.8 4.5 29 29 -36 -110 3 4 mult
Fig 9 B 1.5 1.8 21 20 7 - 57 2 8 mult
Fig 9 C 3.9 4.6 13 5 -68 - 67 3 36 sngl
Fig 10 A 0.56 0.68 21 12 -26 -63 2 6 sngl
Fig 10 B 0.49 0.57 25 14 40 -35 9 24 mult
Fig 10 C 1.2 1.14 47 43 4 140 4 11 mult

Table 1: Characteristic parameters of STRFs shown

3.1 Responses to moving ripples

On average, AI units synchronize their responses to upward and downward mov-
ing ripples equally effectively, with ripple velocities ranging from 2 to over 100
Hz, and ripple densities up to 4 cyc/oct. Examples of three temporal and spec-
tral transfer function magnitudes are shown in Fig. 8, each with its corresponding
STRF. In all cases, units respond well only over a specific range of ripple veloci-
ties and ripple densities, but the detailed shape and extent of the transfer functions
vary from one unit to another. For instance, the unit in Fig. 9A responds well only
to ripple velocities of±4 Hz, whereas the unit in Fig. 9C responds well at least
up to±64 Hz. The unit in Fig. 6 responds well to ripple densities within±0.4
cyc/oct, whereas the unit in Fig. 10A responds over a wider range of densities
(±0.8), but poorly at0 cyc/oct.

Units also vary significantly in the asymmetry of their transfer functions with
respect to the direction of the moving ripple. For example, responses to the two
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Figure 8: Three examples of Spectro-temporal transfer function sections, corresponding
STRFs. For each row (A,B,C ): (left and middle): magnitude of the temporal (left) and
spectral (middle) transfer functions. All other details are as in Fig. 6; (right). STRFs

directions are relatively equal (transfer functions are roughly symmetric) in Figs.
6 and 9A. By comparison, the transfer functions in Fig. 8A–C are asymmetric.
Unit 8B responds better to upward moving ripples; unit 8C responds over a wider
range to downward moving ripples. These asymmetries are discussed in depth
later in the context of transfer function separability.

The STRFs derived from these transfer functions commonly exhibit alternat-
ing regions of positive peaks and negative basins, interpreted here as excitatory
and inhibitory regions, respectively. The four STRFs illustrated in Figs. 6 and
8 are of units that are tuned between 1 and 2 kHz. However, the shapes of the
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Figure 9: Further examples of Spectro-temporal transfer function sections, correspond-
ing STRFs. Conventions as in Fig. 8. A: with narrow ripple velocity bandwidth, B: with
broad ripple velocity bandwidth, C: a spectrally asymmetric unit.

surrounding inhibitory regions vary considerably reflecting the different temporal
and spectral transfer functions. For instance, STRFs maybe relatively symmet-
ric (Fig. 8A) or asymmetric (Fig. 9C). They can be clearly directional, i.e., tilted
upwards (Fig. 8B) or downwards (Fig. 8C) on the spectro-temporal surface.

As is evident, STRFs display a wide variety of shapes that are briefly de-
scribed below. For example, the majority of AI cells exhibit STRFs with a simple
excitatory field and varying amounts of inhibitory surround. The first peak of the
excitatory portion indicates the BF of the unit, while its extent reflects its tuning
curve (or iso-intensity response curve). The center of the whole STRF (i.e., in-
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Figure 10: Further examples of Spectro-temporal transfer function sections, corre-
sponding STRFs. Conventions as in Fig. 8. A: fast dynamics B: slow dynamics C: offset
response.

cluding the inhibitory surrounds) is parameterized byxm± (Eq. 11), a measure
which correlates well with the BF as shown visually in Figs. 6 and 8–10, and
quantitatively in Fig. 12A.

In many cases, the inhibitory surround is spectrally asymmetric around the
BF (Fig. 9C); such asymmetry is effectively captured by the parameterφ (Eq.
12), whereφ values near zero indicate roughly symmetric STRFs, whileφ ≈ 90◦

indicate strong inhibition below the BF, andφ ≈ -90◦ indicate strong inhibition
above below the BF. Theφ distribution in our sample is summarized in Fig. 12C. It
closely resembles that seen earlier with downward moving and stationary ripples
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Figure 11: Two cells with unusual receptive fields.

(Kowalski et al. 1996a; Versnel et al. 1995; Schreiner and Calhoun 1995).
STRFs also vary considerably in their temporal dynamics, best seen in thet–x

domain. Some are fast with envelopes that decay relatively rapidly (Figs. 9C and
10A). Others are slow, taking over 150 ms to decay (as in Figs. 9A and 10B).
These response dynamics reflect details of the temporal transfer function such as
the ripple velocity at which it peaks (characteristic ripple velocity) and its width
(ripple velocity bandwidth). STRFs also exhibit an onset delay (or latency) which
is captured by theτd± value derived from the phase function (Eq. 11). The distri-
bution of this delay tends to be well clustered around 25 ms as seen in Fig. 12B .
Finally, unit STRFs can be generally classified as eitheronset(Figs. 9A–C, 10A–
B, most cells) oroffset(Fig. 10C), a property which corresponds, respectively,
to the negative or positive sign of the parameterθ. Onset STRFs are far more
common in our sample as seen in theθ distribution in Fig. 12C.

Finally, STRFs may display very complex dynamics and spectro-temporal se-
lectivity that are not easily captured by simple parameters. Two examples of such
STRFs are shown in Fig. 11. One might be tempted to dismiss such STRFs as
mere aberration or noise, except for the fact that they are derived from repeatable
responses (δ = 0.10 andε = 0.49 for Fig. 11A andδ = 0.03 andε = 0.04 for Fig.
11B).

3.2 Separability and its relation to STRF shape

Separability is an important property of the transfer functions which has signifi-
cant experimental and theoretical implications. In this paper, we assume quadrant
separability, and ask whether responses are fully separable, the degree of insepa-
rability, and the origin of the inseparability. Each of these indicators has a poten-
tially useful interpretation for the shape of the STRF, and the underlying structure



26

STRF

φm

θ

0 0.02 0.04 0.06 0.080

5

10

τd1

0 5 10
0

0.02

0.04

0.06

0.08

d

0 2 4 6 8 100

10

20
0 10 200

2

4

6

8

10

.91 correlation

fm1

fm
2

2

.45 correlation

0 2 4 6 8 10
0

10
0 10 200

2

4

6

8

10

single
cluster

.92 correlation

fm

BFSTRF

0 0.02 0.04 0.06 0.080

4

8
0 200

0.02

0.04

0.06

0.08

-150 -100 -50 0 50 100 1500

10

200 5 10
-80

-40

0

40

80

.69 correlation
τ

τd

.45 correlation

(kHz)

(kHz)

(kHz)

(kHz)

(s)(s)

(s)

A

B

C

single
cluster

single
cluster

single
cluster

τ

single
cluster

(s)

Figure 12: The statistical distribution of parameters. A: (left) f1
m vs. f2
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frequency fm as determined by quadrant 1 vs. quadrant 2; (right) fm vs. BFSTRF , i.e.,
quadrant averaged center frequency fm vs. frequency giving highest STRF peak. B: (left)
τ1
d vs. τ2
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of processes that give rise to it.
The simplest and most general way to examine full separability is to compute
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the SVD matrixΛ (Eq. 6), and examine the number and value of the resulting
singular values. Fig. 13 illustrates the distribution ofαSV D = (1 − λ2

1/(
∑

i λ
2
i ))

computed from all the cells used. Values near 0 indicate that only the first singular
value has a large non-zero value, and hence a fully separable STRF. Increasing
values indicate increasing degree of inseparability.

As can be seen from Fig. 13, a significant fraction are inseparable, but with no
indication as to the origin of the inseparability. Specifically, it can be shown that
fully separable transfer functions must have symmetric transfer function magni-
tudes about the(w, Ω) origin. Thus, inseparability may be due to a combination
of three factors (Eqs.7,8,9):

• αd, the imbalance in response directionality or in overall strength of the
responses to the upward and downward moving ripples;

• αt, the asymmetry in the temporal transfer functionF (w);

• αs, the asymmetry in the spectral transfer functionG(Ω).

The distribution of these three parameters is shown in Fig. 14. The direction-
ality parameterαd is distributed approximately normally between negative and
positive values. This parameter is closely related to the directional selectivity of
the STRF. STRFs with large|αd| values exhibit obvious directional shapes such
as seen in Fig. 14 (top center). A significant proportion of units (37%) also have
spectral dissimilarity values (αs) exceeding 0.3. An STRF with especially large



28

-1 0 1
0

10

20 αd

|αd|
.51 correlation

0 0.5 1

0 0.5 1
0

10

20 αs

αs

.75 correlation
0 0.5 1

αSVD

223/12a06.m1
223/12a05.m2

0 0.5 1
0

10

20 αt

.66 correlation
0 0.5 1

αSVD

219/25b05.m1
219/25b04.m2

αt

Population statistics
0.5

αSVD

229/11a05.m1
229/11a04.m2

αd = .79

αt = .30

αs = .65

Example STRFs Contributions to αSVD

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy
0.5

0.5

Figure 14: (left) The distribution of three inseparability indicators, αt, αs and αd; (cen-
ter) examples of STRFS with extreme values of the corresponding inseparability indica-
tor; (right) distributions of each inseparability indicator, plotted against total inseparability,
αSV D.

αs is shown in Fig. 14 (middle center). Note that these STRFs may not necessarily
exhibit obvious directionally selective shapes.

A strikingly different finding is the dearth of units (12%) with significant tem-
poral dissimilarity (αt > 0.3) as seen in the distribution in Fig. 14 (bottom left).
An STRF withαt = 0.30 is displayed in Fig. 14 (bottom center): it is difficult to
detect simple correlates of the largeαt values in the shape of the STRF.

The three inseparability indicators do not appear to be significantly correlated,
based on the pair-wise scatter plots in Fig. 15, suggesting that independent mecha-
nisms underlie the expression of each factor. By contrast, each factor (as expected)
is well correlated with the total SVD index as seen in Fig. 14 (right column).

We can define a composite measure of inseparability, the mean ofαt, αs and
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|αd|. Fig. 16 illustrates that this measure is highly correlated toαSV D, and hence
is an equally valid measure of inseparability.

4 Discussion

4.1 Summary of results

The emphasis in this work has been on presenting a technique to describe neural
response patterns of units in the cortex. More precisely, we use moving ripples to



30

characterize the spectral and temporal properties of responses of auditory cortical
neurons, although this is a general method that can be used anywhere responses
are shown to be substantially linear for broadband stimuli.

We have examined the nature of AI responses to rippled spectra moving in
both upward and downward directions, and incorporated these responses into the
STRF. A summary of the main results include:

• We confirm earlier findings (Kowalski et al. 1996a), that AI units respond in
a phase-locked fashion to the moving ripples over a range of velocities and
directions that depend on the ripple density of the spectrum. In particular,
responses are usually tuned around a specific ripple velocity and density. In
the ferret, responses are commonly best in the 4-16 Hz range and densities
lower than 2 cycles/octave. These findings are roughly consistent with those
found in different species using different experimental paradigms: experi-
ments with dynamic spectra (e.g., narrowband such as AM and FM tones,
or broadband such as modulated noise and click trains) have found simi-
lar maximum rates of synchronized responses in AI (Schreiner and Urbas
1988; Eggermont 1994).

• We demonstrate a similarity between responses to upward and downward-
moving ripples. Specifically, the response parameter values and distribu-
tions to either direction are comparable (even if unequal), and hence reflect
general dynamic response properties, not direction-specific propertiesper
se.

• Bi-directional spectro-temporal transfer functions are measured that exhibit
a rich variety of shapes and cover a wide range of stimulus parameters.
The STRF describes the way AI units integrate stimulus power along the
spectro-temporal dimensions.

• We illustrate a variety of STRFs with a broad range of BFs, bandwidths,
asymmetrical inhibition, temporal dynamics, and orientation selectivity. We
have assessed the prevalence of these features over all sampled units by
examining the distribution of specific parameters that reflect each of these
features.

• The degree and origin of inseparability of the unit transfer functions is as-
sessed using two methods. In the first, SVD analysis is applied on the entire
(bi-directional) transfer function to determine the number and ratio of the
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resulting singular values. The results indicate that AI units span a relatively
uniform distribution between full separability to moderate inseparability. In
the second method, we examine the origin of inseparability and find that
it is primarily due to two factors: imbalance in the response power and an
asymmetry in the spectral transfer function relative to the direction of ripple
motion. Interestingly, we find that temporal (and not spectral) transfer func-
tions are relatively symmetric, and hence contribute little to overall transfer
function inseparability.

4.2 Separability and its implications

An important property of the responses is that, for ripples moving in only one
direction, the spectral and temporal functions are separable: within each quadrant
they can be measured independently of each other. The property of quadrant sepa-
rability makes it possible to measure the overall spectro-temporal transfer function
in reasonable times using only single ripples since only a few velocity and spectral
density combinations need to be measured. We have established (Kowalski et al.
1996a; Klein et al. 2000) that all recorded transfer functions in AI exhibit quadrant
separability. In the experiments reported here, we assumed quadrant separability
(Kowalski et al. 1996a; Kowalski et al. 1996b), and proceeded to examine whether
the resulting two-dimensional transfer functions are fully-separable. Our findings
indicate that AI responses fall uniformly on a continuum between moderately to
fully-separable.

A fully separable cell cannot be directionally selective in its responses; insep-
arability is a necessary condition for the formation of more complex STRFs. One
possible consequence of inseparability is orientation selectivity. An orientation-
selective STRF usually has a distinctive elongated form along a spectro-temporal
direction that matches that of its most sensitive ripple stimulus. For example, the
STRF illustrated in Fig. 8B is most responsive to a rippleΩ = 0.4 cyc/oct,w = −4
Hz, whose spectrogram matches well the outline of the STRF spacing and orien-
tation. Orientation selectivity implies that a unit is differentially responsive to one
direction of ripple movement, and hence must have a significant non-zero direc-
tionality index (αd = 0.79). Therefore, orientation selectivity necessarily implies
an inseparable STRF. The opposite is not true: an inseparable STRF might reflect
other factors such as asymmetric temporal and/or spectral transfer functions (αt or
αs 6= 0) which do not manifest themselves in an obvious elongated form or pref-
erential responses to one direction or another (as shown in Fig. 14, center column,
middle and bottom).
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Separability also places strong constraints on the underlying biological pro-
cesses that give rise to the STRF shapes. For example, full separability suggests
that the STRF is constituted of independent temporal and spectral processing
stages. By contrast, inseparability (or just quadrant separability) implies spec-
trally and temporally intertwined stages of processing with the specific form of
the model being entirely dependent on the details of the transfer functions. Quad-
rant separability in particular is a very strong constraint on both the neural in-
puts and the processing of the unit: almost all neural networks (whether linear
or non-linear) with multiple fully-separable STRFs as inputs, will in general pro-
duce a totally inseparable STRF. In particular, the naive procedure of constructing
a directionally sensitive STRF by taking the simple sum of two fully separable
STRFs with differingfm andτd will produce a totally inseparable STRF which is
not quadrant separable. To produce a quadrant separable STRF requires special
inputs and/or special processing.

In (Simon et al. 1999b), it is shown that a quadrant separable, temporally sym-
metric (i.e.,αt ¿ 1), cortical neuron can be easily constructed by taking inputs
from (potentially) many units with (potentially) different spectral response fields
and even with (potentially) different temporal impulse response properties, as long
as the temporal dynamics of the inputs to the cortical cell are fast compared to the
temporal dynamics of the cortical cell itself. This would occur for instance if the
inputs were temporally phase-lagged relative to each other (though not necessarily
90◦ as in Saul and Humphrey (1990) and Dong and Atick (1995).

This is consistent with the input neural connectivity one expects from layer
IV cortical neurons, which receive input from thalamic Medial Geniculate Body
(MGB). MBG neurons may have fully separable STRF (as is the case for typi-
cal Inferior Colliculus Central (ICC) neurons (Escabi and Schreiner 1999)), with
different spectral response fields (differing in width, extent/location of inhibitory
bands, and to a lesser extent, best frequency). MGB temporal cross-sections of
transfer functions are essentially constant when low-passed at a cut-off frequency
appropriate to cortical behavior (e.g., typically well below 100 Hz) (Yeshurun
et al. 1985). Furthermore, some MGB neurons may have a temporal phase-lag, as
in the visual system’s Lateral Geniculate’s “lagged cells”) (Saul and Humphrey
1990).

Significantly, the property of quadrant separability with temporal symmetry
does not allow for any cortical inputs unless those inputs have the same temporal
behavior as the neuron studied. If, for instance, all neurons in the same corti-
cal column have similar temporal properties, including similar neural delays, this
would be consistent with quadrant separability. Otherwise, cortical inputs would
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break quadrant separability and create a totally inseparable neuron. Total insepa-
rability would be expected for cortical neurons in layers which receive significant
input from other cortical columns, or from any other neural source with signifi-
cantly different temporal processing, including (but not limited to) any significant
delays.

It is possible that this extremely constraining result is an anesthesia-induced
effect. If not, the result is a fascinating constraint on the neural network providing
input to a given cortical cell.
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